Recently, programmable arrays of single atoms have emerged as a leading platform for quantum computing and simulation with experiments demonstrating control over hundreds of atoms. Interfacing an atom array with a high-quality optical cavity promises even greater control and new capabilities. By coupling atoms to an optical cavity, we can more efficiently collect light from each atom improving detection; however, scaling up to arrays of atoms remains challenging. We recently addressed this by using locally controlled excited-state Stark shifts to achieve site-selective hyperfine-state cavity readout across a 10-site array. To further speed up array readout, we demonstrated adaptive search strategies utilizing global/subset checks, paving the way for faster quantum error correction cycles. As a step toward fault tolerance, we demonstrated repeated rounds of classical error correction, showing exponential suppression of logical error and extending logical memory fivefold beyond the single-bit idling lifetime.
Josiah Sinclair is a postdoctoral associate in the Vuletić group at the MIT-Harvard Center for Ultracold Atoms where he researches quantum computing and quantum simulation on a programmable Rydberg array in an optical cavity. Josiah received his B.S. in physics from Calvin University in 2013. He then continued his studies at the University of Toronto and graduated with his PhD in physics in 2021. Josiah’s research interests concern what we can discern about the ‘history’ of quantum particles, the harnessing of light-matter interaction and Rydberg blockade for the development of new quantum technologies, and quantum error correction and quantum computing.